วันอังคารที่ 22 มิถุนายน พ.ศ. 2553

ข้อสอบ O-Net ปี 2552 (53-57)


อธิบาย:คลื่นแม่เหล็กไฟฟ้า
คลื่นแม่เหล็กไฟฟ้า เป็นคลื่นชนิดหนึ่งที่ไม่ต้องใช้ตัวกลางในการเคลื่อนที่ เช่น คลื่นวิทยุ คลื่นไมโครเวฟ

ปัจจุบันมีการใช้คลื่นแม่เหล็กไฟฟ้าในหลายๆด้านเช่น การติดต่อสื่อสาร (มือถือ โทรทัศน์ วิทยุ เรดาร์ ใยแก้วนำแสง) ทางการแพทย์ (รังสีเอกซ์) การทำอาหาร (คลื่นไมโครเวฟ) การควบคุมรีโมท (รังสีอินฟราเรด)

คุณสมบัติของคลื่นแม่เหล็กไฟฟ้าคือเป็นคลื่นที่เกิดจากคลื่นไฟฟ้าและคลื่นแม่เหล็กตั้งฉากกันและเคลื่อนที่ไปยังทิศทางเดียวกัน คลื่นแม่เหล็กไฟฟ้าสามารถเดินทางได้ด้วยความเร็ว 299,792,458 m/s หรือเทียบเท่ากับความเร็วแสง

คลื่นแม่เหล็กไฟฟ้า เกิดจากการรบกวนทางแม่เหล็กไฟฟ้า (Electromagnetic disturbance) โดยการทำให้สนามไฟฟ้าหรือสนามแม่เหล็กมีการเปลี่ยนแปลง เมื่อสนามไฟฟ้ามีการเปลี่ยนแปลงจะเหนี่ยวนำให้เกิดสนามแม่เหล็ก หรือถ้าสนามแม่เหล็กมีการเปลี่ยนแปลงก็จะเหนี่ยวนำให้เกิดสนามไฟฟ้า

คลื่นแม่เหล็กไฟฟ้าเป็นคลื่นตามขวาง ประกอบด้วยสนามไฟฟ้าและสนามแม่เหล็กที่มีการสั่นในแนวตั้งฉากกัน และอยู่บนระนาบตั้งฉากกับทิศการเคลื่อนที่ของคลื่น คลื่นแม่เหล็กไฟฟ้าเป็นคลื่นที่เคลื่อนที่โดยไม่อาศัยตัวกลาง จึงสามารถเคลื่อนที่ในสุญญากาศได้

สเปกตรัม (Spectrum) ของคลื่นแม่เหล็กไฟฟ้าจะประกอบด้วยคลื่นแม่เหล็กไฟฟ้าที่มีความถี่และความยาวคลื่นแตกต่างกัน ซึ่งครอบคลุมตั้งแต่ คลื่นแสงที่ตามองเห็น อัลตราไวโอเลต อินฟราเรด คลื่นวิทยุ โทรทัศน์ ไมโครเวฟ รังสีเอกซ์ รังสีแกมมา เป็นต้น ดังนั้นคลื่นแม่เหล็กไฟฟ้า จึงมีประโยชน์มากในการสื่อสารและโทรคมนาคม และทางการแพทย์

สมบัติของคลื่นแม่เหล็กไฟฟ้า
1.ไม่ต้องใช้ตัวกลางในการเคลื่อนที่
2.อัตราเร็วของคลื่นแม่เหล็กไฟฟ้าทุกชนิดในสุญญากาศเท่ากับ 299,792,458 m/s ซึ่งเท่ากับ อัตราเร็วของแสง
3.เป็นคลื่นตามขวาง
4.ถ่ายเทพลังงานจากที่หนึ่งไปอีกที่หนึ่ง
5.ถูกปล่อยออกมาและถูกดูดกลืนได้โดยสสาร
6.ไม่มีประจุไฟฟ้า
7.คลื่นสามารถแทรกสอด สะท้อน หักเห และเลี้ยวเบนได้
สี
ความยาวคลื่น (nm)
ม่วง
380-450
น้ำเงิน
450-500
เขียว
500-570
เหลือง
570-590
แสด
590-610

แดง
610-760

สเปกตรัมคลื่นแม่เหล็กไฟฟ้า


อธิบาย: ฉนวนโพลียูรีเทนโฟมคือฉนวนเก็บเสียงและเป็นฉนวนกันเสียงได้ดีจึงเป็นที่นิยมใช้กับผนังกันเสียงกันมากที่สุด

คำนิยามของฉนวนเสียง หมายถึง วัสดุที่ไม่นำเสียงผ่านจากจุดหนึ่งไปอีกจุดหนึ่ง หรือต้านทานการผ่านของเสียง โดยการไม่ให้เสียงเข้าหรือออกจากอีกด้านหนึ่งไปอีกด้านหนึ่งนั่นเอง
การประยุกต์นำฉนวนโพลียูรีเทนโฟม ( Polyurethane Foam ) หรือพียูโฟม ( P.U.Foam ) มาเป็นฉนวนเสียง เพื่อป้องกันเสียงไม่ให้ผ่าน ซึ่งสามารถป้องกันเสียงผ่านได้ดี ด้วยคุณสมบัติที่เด่นๆ ของโฟมประเภทนี้ จึงเป็นฉนวนเสียงหรือฉนวนป้องกันเสียงที่ดีอีประเภทหนึ่ง
ฉนวนกันความร้อนโพลียูรีเทนโฟมหรือพียูโฟมสามารถนำมาประยุกต์ใช้ประโยชน์เป็นฉนวนเสียงหรือฉนวนป้องกันเสียงหรือโฟมกันเสียงได้อย่างลงตัว ในการนำฉนวนกันความร้อนพียูโฟมไปประยุกต์เป็นฉนวนเสียงหรือโฟมกันเสียงนั้น ต้องพิจารณาถึงการนำไปใช้ว่า ใช้ฉนวนเสียงด้านผิวนอกหรือฉนวนป้องกันเสียงดังจากภายในอาคาร เพราะการพ่นฉนวนโพลียูรีเทนโฟมกันเสียงหรือฉนวนเสียงประเภทนี้จะต้องได้ความหนาของเนื้อฉนวนชั้นโฟมที่มากพอจึงจะสามารถเป็นฉนวนกันเสียงหรือฉนวนป้องกันเสียงดังได้ การกำหนดความหนาของชั้นโฟมที่จะใช้พ่นป้องกันเสียงนั้นอยู่ที่โวลลุ่มของเสียงเราต้องทราบจำนวนเดซิเบลของเสียงว่าดัง ขนาดจำนวนกี่เดซิเบลอย่างเช่นความดังของเสียงจำนวน 30 เดซิเบลก็ต้องพ่นโฟมกันเสียงความหนา 1 นิ้วอย่างนี้เป็นต้นถ้าเสียงดังมากกว่านี้ก็จำเป็นจะต้องใช้พ่นโฟมกันเสียงหรือกำหนดความหนาของโฟมกันเสียงเพิ่มมากขึ้นเพื่อให้ลดเสียงดังตามที่ต้องการได้และเพื่อให้บรรลุวัถุประสงค์และได้ผลลัพท์แก้ปัญหาตามที่เราต้องการ ถ้าหากพ่นโฟมกันเสียงภายในอาคารฉนวนเสียงหรือฉนวนป้องกันเสียงจะทำหน้าที่เก็บเสียงดังหรือลดทอนเสียงดังไม่ให้เล็ดลอดออกไปด้านนอกหรือออกไปได้น้อยที่สุด นี่คือการนำฉนวนกันความร้อนโพลียูรีเทนโฟมหรือพียูโฟมไปประยุกต์ใช้งานในการทำเป็นฉนวนเสียงหรือฉนวนเก็บเสียงหรือโฟมกันเสียง

เสียงเป็นคลื่น ดังนั้นจึงสามารถเกิดการหักเหได้เช่นเดียวกับคลื่น เช่น เสียงเดินทางผ่านอากาศเย็นเข้าสู่บริเวณอากาศร้อนจะหักเหเบนออกจากเส้นแนวฉาก ดังรูป




อธิบาย: การสะท้อนของคลื่น Reflection
เมื่อคลื่นเคลี่ยนที่ไปชนกับสิ่งกีดขวาง หรือเคลื่อนที่ไปยังปลายสุดของตัวกลาง หรือระหว่างรอยต่อของตัวกลาง คลื่นส่วนหนึ่งจะเคลื่อนที่กลับมาในตัวกลางเดิม เรียกว่า การสะท้อนของคลื่น และคลื่นที่สะท้อนกลับมา เรียกว่า คลื่นสะท้อน ส่วนคลื่นที่ไปกระทบปลายสุดของตัวกลางก่อนเกิดการสะท้อนเรียกว่า คลื่นตกกระทบ
หลายๆสิ่งรอบตัวเราได้ กระจก หน้าต่าง แว่นตา รถที่ขัดจนมันวับ
รองเท้าบูทขัดมัน น้ำในสระ แต่ การสะท้อนแสงจะดีที่สุดในกระจกเงา เพราะมีผิวเรียบ
และมันเงา
การหักเหของคลื่น(Refraction)
เมื่อให้คลื่นเคลื่อนที่จากตัวกลาหนึ่งไปสู่อีกตัวกลางหนึ่ง เช่น คลื่นน้ำลึกเคลื่อนที่จากน้ำลึกเข้าสู่บริเวณน้ำตื้น จะทำให้ความยาวคลื่นของคลื่นน้ำจะเปลี่ยนแปลงไปด้วย การที่คลื่นน้ำเคลื่อนที่จากตัวกลางหนึ่งไปสู่อีกตัวกลางหนึ่งแล้วทำให้อัตรา เร็วและความยาวคลื่นเปลี่ยนไปแต่ความถี่คงที่ เรียกว่า "การหักเหของคลื่น" และคลื่นที่เคลื่อนที่ผ่านรอยต่อ ระหว่างตัวกลางไปเรียกว่า "คลื่นหักเห"
ในการหักเหของคลื่นจากตัวกลางหนึ่งไปสู่อีกตัวกลางหนึ่ง จะทำให้ความเร็ว และความยาวคลื่นเปลี่ยนไป แต่ทิศทางการเคลื่อนที่ของคลื่นอาจจะไม่เปลี่ยน หรือเปลี่ยนไปจากแนวเดิมก็ได้
การแทรกสอดของคลื่น(Interference)
เมื่อมีคลื่นต่อเนื่องจากแหล่งกำเนิดคลื่นสองแหล่งที่มีความถี่เท่ากันและเฟสตรงกันเคลื่อนที่มาพบกัน จะเกิดการซ้อนทับระหว่างคลื่นต่อเนื่องสองขบวนนั้น ปรากฎการณ์เช่นนี้เรียกว่า การแทรกสอดของคลื่น (Interference)

1.การแทรกสอดแบบเสริมกัน เกิดจากสันคลื่นของคลื่นทั้งสองมารวมกัน คลื่นลัพธ์ที่เกิดขึ้น จะมีวันคลื่นสูงกว่าเดิม และมีท้องคลื่นลึกกว่าเดิม และจะเรียกตำแหน่งนั้นว่า ปฏิบัพ(Antinode)

2.การแทรกสอดแบบหักล้าง เกิดจากสันคลื่นจากแหล่งกำเนิดหนึ่งมารวมกับท้องคลื่นของ อีกแหล่งกำเนิดหนึ่ง คลื่นลัพธ์ที่เกิดขึ้นจะมีสันคลื่นต่ำกว่าเดิม และท้องคลื่นตื้นกว่าเดิม และเรียกตำแหน่งนั้นว่า บัพ(Node)
การเลี้ยวเบนของคลื่น

--------------------------------------------------------------------------------

เมื่อมีสิ่งกีดขวางมากั้นการเคลื่อนที่ของคลื่น คลื่นจะเกิดการสะท้อน แต่ถ้าสิ่งกีดขวางนั้นกั้นการเคลื่อนที่ ของคลื่นเพียงบางส่วน จะพบว่ามีคลื่นส่วนหนึ่งแผ่จากขอบสิ่งกีดขวางไปทางด้านหลังของสิ่งกีดขวางนั้น การที่มีคลื่นปรากฎอยู่ทางด้านหลังของแผ่นกั้นคลื่นในบริเวณนอกทิศทางเดิมของคลื่นเช่นนี้เรียกว่า การเลี้ยวเบนของคลื่น

ในการอธิบายการเลี้ยงเบนของคลื่นต้องใช้ หลักการของฮอยเกนส์ ซึ่งกล่าวไว้ว่า
"แต่ละจุดบนหน้าคลื่นสามารถถือได้ว่าเป็นแหล่งกำเนิดของคลื่นใหม่ที่ให้กำเนิดคลื่น ซึ่งเคลื่อนที่ออกไปทุกทิศทุกทางด้วยอัตราเร็วเท่ากับ อัตราเร็วของคลื่นเดิมนั้น"
สมบัติอื่นๆที่เกิดขึ้นกับคลื่น
การถูกดูดกลืน ( ABSORPTION ) เมื่อคลื่นวิทยุเดินผ่านตัวกลาง พลังงานส่วนหนึ่งจะสูญเสียไปในลักษณะที่กลายเป็นความร้อนเรียกว่า คลื่นวิทยุถูกดูดกลืนโดยตัวกลาง ตัวกลางนั้นไม่ว่าจะเป็นตัวนำ หรือมีภาพเป็นตัวต้านทานต่อคลื่นวิทยุ อาคารตึก และสิ่งก่อสร้างต่าง ๆ บนพื้นโลก อุณหภูมิของอากาศ น้ำ และฝุ่นละออง ซึ่งประกอบกันเป็นชั้นบรรยากาศ สามารถเป็นตัวดูดกลืนพลังงานได้ทั้งสิ้น
การกระจัดการกระจาย ( SCATTERING ) เมื่อคลื่นเดินทางตกกระทบบนตัวกลางที่รวมกันเป็นกลุ่ม พลังงานส่วนหนึ่งจะสะท้อนออกมา และบางส่วนเดินทางหักเหเข้าไปในตัวกลาง ส่วนหนึ่งของพลังงานที่เข้าไปในตัวกลางจะถูกดูดกลืนแปลงรูปเป็นความร้อน และมีอีกส่วนหนึ่งถูกตัวกลางคายออกมาอีกในรูปของการกระจายพลังงานคลื่น เนื่องจากคลื่นที่กระจายออกมานี้ไม่ค่อยเป็นระเบียบเราจึงเรียกว่า คลื่นกระจัดกระจาย การกระจัดกระจายของคลื่นนี้ บางครั้งก็นำมาใช้ประโยชน์ได้เช่น ในระบบการสื่อสารที่เรียกว่า TROPOSPHERIC SCATTER ซึ่งอาศัยการกระจัดกระจายของคลื่นวิทยุจากกลุ่มอากาศที่หนาแน่นในชั้นบรรยากาศ TROPOSPHERE ซึ่งอยู่ห่างจากผิวโลกประมาณ 10 กิโลเมตร ในบางครั้งการกระจัดกระจายของคลื่นก็มีผลเสียเช่น การสื่อสารย่านความถี่ไมโครเวฟ เมื่อคลื่นตกกระทบเม็ดฝนจะทำให้คลื่นเกิดการสูญเสียเป็นผลจากการกระจัดกระจาย และการหักเหทำให้คลื่นไม่สามารถเดินทางไปยังปลายทางได้หมด
การลดทอนพลังงาน (ATTENUATION)ของคลื่น จะมีความหมายหรือสาเหตุคล้ายคลึงกับการถูกดูดกลืน คือการลดทอนพลังงานคลื่นอันเนื่องมาจากการถ่างออกของลำคลื่นวิทยุในลักษณะที่คล้ายคลึงกับการถ่างออกของลำแสงไฟฉายปรากฎการณ์เช่นนี้จะทำให้ ความเข้มของพลังงานคลื่นวิทยุต่อหนึ่งหน่วยพื้นที่ลดลงไปเรื่อยๆ เมื่อคลื่นเดินทางห่างจากจุดกำเนิดออกไปถ้าแหล่งกำเนิดคลื่นมีลักษณะที่สามารถกระจายคลื่นได้ทุกทิศทางรอบตัวหรือเรียกว่า ISOTROPIC ANTENNA นั้น คลื่นที่ถูกสร้างขึ้นจะลดความเข้มลงไปเรื่อย ๆ เมื่อคลื่นเดินทางห่างออกไป โดยความเข้มจะแปรกลับ กับระยะทางกำลังสองนั่นเอง






อธิบาย:แกนนอนในแผนภูมิแทนระยะทาง และแกนตั้งแทนค่า ณ เวลาหนึ่ง ของปริมาณหนึ่งซึ่งกำลังเปลี่ยนแปลง (ตัวอย่างเช่น สำหรับคลื่นเสียง ปริมาณที่กำลังเปลี่ยนแปลงก็คือแรงดันอากาศ หรือสำหรับคลื่นแม่เหล็กไฟฟ้า ปริมาณที่กำลังเปลี่ยนแปลงก็คือสนามไฟฟ้าและสนามแม่เหล็ก) ซึ่งเป็นฟังก์ชันของระยะทาง

ความยาวคลื่น λ สัมพันธ์แบบผกผันกับความถี่ของคลื่นนั้น โดยความยาวคลื่นมีค่าเท่ากับความเร็วของคลื่นนั้นๆ หารด้วยความถี่ ถ้าเราพิจารณาคลื่นแม่เหล็กไฟฟ้าในสุญญากาศ ความเร็วนั้นก็คือความเร็วแสงนั่นเอง

เมื่อ:

λ = ความยาวคลื่น
c = ความเร็วแสงในสุญญากาศ ซึ่งมีค่าเท่ากับ 299,792.458 กิโลเมตรต่อวินาที
f = ความถี่ของคลื่น
สำหรับคลื่นวิทยุ ความสัมพันธ์นี้เขียนโดยประมาณได้เป็น: ความยาวคลื่น (ในหน่วยเมตร) = 300 / ความถี่ (ในหน่วย megahertz)

เมื่อคลื่นแสง (หรือคลื่นแม่เหล็กไฟฟ้าใดๆ) เดินทางในตัวกลางใดที่ไม่ใช่สุญญากาศ ความยาวคลื่นจะลดลงด้วยอัตราส่วนเท่ากับดรรชนีหักเห n ของตัวกลางนั้น แต่ความถี่จะยังคงเท่าเดิม ความยาวคลื่นแสงในตัวกลางใดๆ สามารถเขียนได้เป็น

เมื่อ:

λ0 คือความยาวคลื่นในสุญญากาศ
ไม่ว่าคลื่นแสงจะเดินทางอยู่ในตัวกลางใด เมื่อเราอ้างถึงความยาวคลื่น มักหมายถึงความยาวคลื่นในสุญญากาศเสมอ
หลุยส์-วิคทอร์ เดอบรอยล์ ค้นพบว่าอนุภาคที่มีโมเมนตัม มีความยาวคลื่นซึ่งสัมพันธ์กับฟังก์ชันคลื่นของอนุภาคนั้น เรียกว่า ความยาวคลื่นของเดอบรอยล์


ความยาวคลื่น ( Wavelength, λ ) : ระยะระหว่างจุดที่เหมือนกันในคลื่นสองคลื่นที่อยู่ถัดกันในการสั่นแบบคลื่นของรังสีแม่เหล็กไฟฟ้า
ที่มา http://cobalt.golden.net/~kwastro/images/Wavelength.jpg


ตอบ 2

คลื่นวิทยุ (อังกฤษ: Radio waves) เป็นคลื่นแม่เหล็กไฟฟ้าชนิดหนึ่งที่เกิดขึ้นในช่วงความถี่วิทยุบนเส้นสเปกตรัมแม่เหล็กไฟฟ้า
คลื่นวิทยุถูกค้นพบครั้งแรกระหว่างการตรวจสอบทางคณิตศาสตร์โดย เจมส์ เคลิร์ก แมกซ์เวลล์ ในปี ค.ศ. 1865 แมกซ์เวลล์สังเกตพบคุณสมบัติของแสงบางประการที่คล้ายคลึงกับคลื่น และคล้ายคลึงกับผลการเฝ้าสังเกตกระแสไฟฟ้าและแม่เหล็ก เขาจึงนำเสนอสมการที่อธิบายคลื่นแสงและคลื่นวิทยุในรูปแบบของคลื่นแม่เหล็กไฟฟ้าที่เดินทางในอวกาศ ปี ค.ศ. 1887 เฮนริค เฮิร์ตซ ได้สาธิตสมการของแมกซ์เวลล์ว่าเป็นความจริงโดยจำลองการสร้างคลื่นวิทยุขึ้นในห้องทดลองของเขา หลังจากนั้นก็มีสิ่งประดิษฐ์ต่างๆ เกิดขึ้นมากมาย และทำให้เราสามารถนำคลื่นวิทยุมาใช้ในการส่งข้อมูลผ่านห้วงอวกาศได้

นิโคลา เทสลา และ กูกลีเอลโม มาร์โคนี ได้รับยกย่องว่าเป็นผู้ประดิษฐ์ระบบที่นำคลื่นวิทยุมาใช้ในการสื่อสาร[1][2]

ที่มา http://th.wikipedia.org/wiki/%E0%B8%84%E0%B8%A5%E0%B8%B7%E0%B9%88%E0%B8%99%E0%B8%A7%E0%B8%B4%E0%B8%97%E0%B8%A2%E0%B8%B8

Shoutmix